The Current Approach to the Stenotic Aortic and Mitral Valve

TCT 2004

Igor F. Palacios, MD
Director Cardiac Catheterization Laboratory
Director of Interventional Cardiology
Massachusetts General Hospital
Harvard Medical School
Presenter Disclosure Information

Name: Igor Palacios

Nothing to Disclose Related to this Presentation
Percutaneous Treatment of Valvular Heart Disease

- **Stenotic Lesions:**
 - Pulmonary balloon valvuloplasty
 - Mitral balloon valvuloplasty
 - Aortic balloon valvuloplasty
 - Tricuspid balloon valvuloplasty

- **Regurgitant Lesions:**
 - Percutaneous aortic valve replacement
 - Percutaneous mitral valve repair/replacement
Aortic Stenosis

Igor F. Palacios, MD
Director Cardiac Catheterization Laboratory
& Interventional Cardiology
Massachusetts General Hospital
Associate Professor of Medicine
Harvard Medical School
Aortic Balloon Valvuloplasty

Patient Population

- **Number of Patients:** 310 (394 PAV)
- **Age:** 79±1 (35-96) years
- **Female/Male:** 180/130
- **NYHA Class:**
 - Class I: 2%
 - Class II: 8%
 - Class III: 30%
 - Class IV: 53%
 - Shock: 7%

All patients were non or very high surgical candidates for AVR.
Aortic Balloon Valvuloplasty

Associated Comorbid Conditions

- COPD 64 (21%)
- Chronic Renal Failure 64 (21%)
- Peripheral Vascular Disease 54 (17%)
- Cancer 48 (15%)
- Cerebrovascular Disease 48 (15%)
- Others* 112 (38%)

* Liver failure, Hip fracture, GI bleeding, Complications of Diabetes, Alzheimer, Sepsis, Thyroid disease, AIDS.
Aortic Balloon Valvuloplasty

Techniques

- Retrograde technique.
- Transseptal antegrade technique.
- Inoue transseptal antegrade technique.
Aortic Balloon Valvuloplasty
Retrograde Technique
Retrograde PAV
Retrograde PAV
Aortic Balloon Valvuloplasty

Pre-PAV

AVA: 0.6 cm²

Post-PAV

AVA: 1.2 cm²
Pre-PAV AVA = 0.4 cm²
Antegrade PAV Using the Inoue Balloon Technique
Post-PAV AVA = 1.0 cm²
Hemodynamic Changes After PAV

<table>
<thead>
<tr>
<th></th>
<th>Pre-PAV</th>
<th>Post-PAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic Gradient</td>
<td>63</td>
<td>18</td>
</tr>
<tr>
<td>Cardiac Output</td>
<td>3.3</td>
<td>4.7</td>
</tr>
<tr>
<td>AVA</td>
<td>0.4</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Aortic Balloon Valvuloplasty

Mechanism
Aortic Balloon Valvuloplasty

Immediate Outcome

Aortic Gradient (mmHg)

Pre-PAV: 56±1
POST-PAV: 25±1

P <0.0001

AVA (cm²)

Pre-PAV: 0.5±0.1
POST-PAV: 0.9±0.1

P <0.0001
Aortic Balloon Valvuloplasty

Complications

- In-Hospital Mortality: 8.6%
- Vascular Surgery: 9.5%
- Severe AI: 1.5%
- Stroke: 1.2%
- Cholesterol Emboli: 1.0%
Aortic Balloon Valvuloplasty

Post-PAV AVA
- Failure: 3%
- ≤ 0.7 cm²: 38%
- 0.7-0.9 cm²: 38%
- ≥ 1.0 cm²: 27%

Post-PAV AI
- ≥ 2 Grade: 2%
- < 1 Grade: 28%
- No Changes: 65%

Palacios et al

Cribier et al
Aortic Balloon Valvuloplasty

Natural History of Aortic Stenosis

![Graph showing the natural history of aortic stenosis](image-url)
Aortic Balloon Valvuloplasty

Natural History of Aortic Stenosis in the Elderly

Survival (%)

Control

Severe AS

Time of Follow-up (years)

Aortic Valve Replacement in Octogenarians With Aortic Stenosis

Life Table Analysis

Probability of Survival

Years after AVR
Aortic Balloon Valvuloplasty

Mortality

- AVA ≥ 1.0 cm²
- AVA 0.8 - 0.9 cm²
- AVA < 0.7 cm²

% vs. MONTHS FIU
Aortic Balloon Valvuloplasty

Clinical Restenosis
PAV as a Bridge to AVR

Long Term Survival

![Graph showing survival over time for PAV and PAV + AVR with a p-value of 0.0001]
Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis
First Human Case Description

Alain Cribier, Circulation 2002 106: 3006-3008
Aortic Balloon Valvuloplasty

Indications

- Non-Surgical Candidates
- Bridge to AVR
- Bridge to Major Non-Cardiac Surgery
- Cardiogenic Shock
- Gorlin Conondrum
- Non Calcified Valves (Congenital AS, Rheumatic AS)
Mitral Balloon Valvuloplasty

Long-Term Results

Igor F. Palacios, MD
Director Cardiac Catheterization Laboratory
Director of Interventional Cardiology
Massachusetts General Hospital
Associate Professor of Medicine
Harvard Medical School
Symptomatic patients.
No evidence of left atrium thrombus by TEE.
Adequate mitral valve morphology
 – Echocardiographic assessment (echo-score).
 – Fluoroscopic calcium.
Pre-PMV MR ≤ 2 + (Seller’s classification).
Lack of significant aortic valve or coronary artery disease requiring surgery.
Mitral Balloon Valvuloplasty

Baseline Characteristics

- Number of PMV: 939
- Age (years): 55 ± 15
- Female Gender: 82%
- Atrial Fibrillation: 49%
- Previous Commissurotomy: 16%
- NYHA Class
 - Class I: 2%
 - Class II: 24%
 - Class III: 61%
 - Class IV: 13%

Mitral Balloon Valvuloplasty

Pre-PMV MR

MR 0 + (54.5%)
MR 1 + (39%)
MR 2 + (6%)
MR 3 + (0.5%)

Fluoroscopic Calcium

CALCIUM 1 + (43%)
CALCIUM 2 + (16%)
CALCIUM 3 + (6%)
CALCIUM 4 + (3%)
NO CALCIUM (32%)

Assessment of Mitral Valve Morphology
The MGH - Echocardiographic Score

- Leaflets Rigidity 0 - 4
- Leaflets Thickening 0 - 4
- Leaflets Calcification 0 - 4
- Subvalvular Disease 0 - 4
- Total Score 0 - 16

Low vs. High Mitral Score

Low Score (5) High Score (9)
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>≤ 8</th>
<th>> 8</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>634</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Mean Echo Score</td>
<td>7.7 ± 2.2</td>
<td>10.2 ± 1.4</td>
<td>0.0001</td>
</tr>
<tr>
<td>Male Gender</td>
<td>14.8%</td>
<td>26.2%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mean Age</td>
<td>51 ± 14</td>
<td>63 ± 14</td>
<td>0.0001</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>44.3%</td>
<td>59.7%</td>
<td>0.0001</td>
</tr>
<tr>
<td>NYHA Class IV</td>
<td>7.5%</td>
<td>25.2%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Calcium $\geq 2+$</td>
<td>10.9%</td>
<td>59.5%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Pre-PMV MR $> 1 +$</td>
<td>5.7%</td>
<td>9.9%</td>
<td>0.004</td>
</tr>
<tr>
<td>Prior Commissurotomy</td>
<td>14.7%</td>
<td>20.3%</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Mitral Balloon Valvuloplasty

PMV Technique

- DOUBLE BALLOON (72%)
- SINGLE BALLOON (2.5%)
- INOUE (25%)
- Mixed (0.5%)

Mitral Balloon Valvuloplasty

The Double Balloon Technique
Mitral Balloon Valvuloplasty

The Inoue Technique
Mitral Balloon Valvuloplasty

The Cribier Technique
Mitral Balloon Valvuloplasty

The Multi-Track technique
Mitral Balloon Valvuloplasty

Immediate Outcome

LV/LA Pre-PMV

LV/LA Post-PMV

MVA= 0.9 cm² 95%

MVA= 2.2 cm² 96%
Mitral Balloon Valvuloplasty

Procedural Success

- Post-PMV Mitral Valve Area ≥ 1.5 cm²
- Post-PMV MR ≤ 2 + (Seller’s Class)
Mitral Balloon Valvuloplasty

Changes in MVA

Pre-PMV
Post-PMV

0.9±0.3
1.9±0.6

P <0.001

Post-PMV MR ≥ 3 +

Patients (%)

Success: 72%

MR 3 +
MR 4 +

9.0
6.3
2.7
Mitral Balloon Valvuloplasty

Unsuccessful PMV

- MR $\geq 3 +$ 33.1%
- MVA < 1.5 cm2 66.9%

Post-PMV MVA

- MVA ≤ 1.0 cm2 10.1%
- 1.1-1.4 cm2 10.1%
- 1.5-1.9 cm2 34.2%
- ≥ 2.0 cm2 38.5%

Mitral Balloon Valvuloplasty

Procedural Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>≤ 8</th>
<th>> 8</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>634</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Pre-PMV MVA</td>
<td>1.0±0.3</td>
<td>0.8±0.3</td>
<td>0.0001</td>
</tr>
<tr>
<td>EBD/A/BSA</td>
<td>3.66±0.5</td>
<td>3.54±0.5</td>
<td>0.001</td>
</tr>
<tr>
<td>Post-PMV MVA</td>
<td>2.0±0.6</td>
<td>1.6±0.6</td>
<td>0.0001</td>
</tr>
<tr>
<td>QP/QS > 1.5:1</td>
<td>5.4%</td>
<td>5.2%</td>
<td>NS</td>
</tr>
<tr>
<td>Post-PMV MR 3 +</td>
<td>5.8%</td>
<td>6.3%</td>
<td>NS</td>
</tr>
<tr>
<td>Post-PMV MR 4 +</td>
<td>2.5%</td>
<td>5.3%</td>
<td>0.03</td>
</tr>
<tr>
<td>Procedure Success</td>
<td>79%</td>
<td>56.4%</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Independent Predictors of Success

<table>
<thead>
<tr>
<th>Variables</th>
<th>Odd Ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger Pre-PMV MVA</td>
<td>13.05</td>
<td><0.00001</td>
</tr>
<tr>
<td>Less Pre-PMV MR</td>
<td>3.85</td>
<td><0.00001</td>
</tr>
<tr>
<td>Younger Age</td>
<td>3.33</td>
<td>0.006</td>
</tr>
<tr>
<td>No Prior Commissurotomy</td>
<td>1.85</td>
<td>0.00</td>
</tr>
<tr>
<td>Male Gender</td>
<td>1.92</td>
<td>0.00</td>
</tr>
<tr>
<td>Echo-Score ≤ 8</td>
<td>1.69</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Mitral Balloon Valvuloplasty

Complications

- Procedure Mortality 0.6%
- In-Hospital Mortality 1.9%
- Emergency MVR 1.4%
- Tamponade 0.8%
- Stroke 1.2%

In-Hospital Adverse Events

<table>
<thead>
<tr>
<th>Echo Score</th>
<th>≤ 8</th>
<th>> 8</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>634</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Procedural Death</td>
<td>0.3%</td>
<td>1.3%</td>
<td>0.08</td>
</tr>
<tr>
<td>In-Hospital Death</td>
<td>0.8%</td>
<td>4.3%</td>
<td>0.0006</td>
</tr>
<tr>
<td>Tamponade</td>
<td>0.8%</td>
<td>0.9%</td>
<td>NS</td>
</tr>
<tr>
<td>Emergency MVR</td>
<td>1%</td>
<td>2.3%</td>
<td>NS</td>
</tr>
<tr>
<td>In-Hospital MVR</td>
<td>2.2%</td>
<td>5.7%</td>
<td>0.007</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.1%</td>
<td>1.3%</td>
<td>NS</td>
</tr>
<tr>
<td>AV Block</td>
<td>0.5%</td>
<td>0.7%</td>
<td>NS</td>
</tr>
</tbody>
</table>
Percutaneous Mitral Balloon Valvuloplasty
Long-Term Follow-Up
Percutaneous Mitral Balloon Valvuloplasty
Long-Term Follow-Up

Long-term Follow-up

- Death 110 (13.0%)
- MVR 234 (27.7%)
- Redo-PMV 54 (6.4%)
- Combined Events 398 (47.2%)
- Free of Events 446 (52.8%)
 - NYHA I-II 417 (94%)
 - NYHA III-IV 29 (6.5%)

Time of follow-up 4.2±3.7 (0.5-15) years
Independent Predictors of Combined Events

<table>
<thead>
<tr>
<th>Variables</th>
<th>Risk Ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.02</td>
<td><0.0001</td>
</tr>
<tr>
<td>NYHA Class IV</td>
<td>1.35</td>
<td>0.05</td>
</tr>
<tr>
<td>Prior Commissurotomy</td>
<td>1.50</td>
<td>0.002</td>
</tr>
<tr>
<td>Echo-Score</td>
<td>1.31</td>
<td>0.03</td>
</tr>
<tr>
<td>Pre-PMV MR \geq 2 +</td>
<td>1.56</td>
<td>0.02</td>
</tr>
<tr>
<td>Post-PMV MR \geq 3+</td>
<td>3.54</td>
<td><0.0001</td>
</tr>
<tr>
<td>Post-PMV PA</td>
<td>1.02</td>
<td><0.00001</td>
</tr>
</tbody>
</table>

Mitral Balloon Valvuloplasty
Effect of Echo Score

Mitral Balloon Valvuloplasty
Effect of Echo Score

Long-term Survival

Time of Follow-up (months)
Survival (%)

Echo Score ≤ 8
Total Group
Echo Score > 8

P < 0.0001

Mitral Balloon Valvuloplasty
Effect of Echo Score

Long-term Event Free Survival

Optimal Candidates for PMV

- Age ≤ 55 year old.
- Normal Sinus Rhythm.
- Echocardiographic Score ≤ 8.
- No Fluoroscopic Mitral Valve Calcification.
- Pre-PMV MR ≤ 1 + Seller’s Grade
Follow-up of Optimal Candidates for Percutaneous Mitral Balloon Valvuloplasty

Long-term Follow-up

Survival (%)

Follow-up Time (months)

Survival
Event Free Survival
PMV vs. Surgical Closed and Open Mitral Commissurotomy

Randomized Trials

<table>
<thead>
<tr>
<th></th>
<th>Turi</th>
<th>Reyes/Turi</th>
<th>Farhat</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMV</td>
<td>21</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CCM</td>
<td>19</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>27±12</td>
<td>30±9</td>
<td>29±12</td>
</tr>
<tr>
<td></td>
<td>29±10</td>
<td>31±9</td>
<td>27±12</td>
</tr>
<tr>
<td>Echo Sc</td>
<td>7.2±1.7</td>
<td>6.7±1.3</td>
<td>6.0±1</td>
</tr>
<tr>
<td></td>
<td>8.4±1.5</td>
<td>7±1.2</td>
<td>6.0±1</td>
</tr>
<tr>
<td>MVA Post</td>
<td>1.6±0.6</td>
<td>2.0±0.6</td>
<td>2.1±0.5</td>
</tr>
<tr>
<td></td>
<td>1.6±0.8</td>
<td>2.1±0.6</td>
<td>2.2±0.4</td>
</tr>
<tr>
<td>MVA 7 yr</td>
<td>1.6±0.4</td>
<td>1.9±0.6</td>
<td>1.8±0.3</td>
</tr>
<tr>
<td></td>
<td>1.7±0.6</td>
<td>1.6±0.4</td>
<td>1.8±0.3</td>
</tr>
<tr>
<td>Restenosis</td>
<td>30%</td>
<td>27%</td>
<td>6.6%</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>43%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Event Free</td>
<td>91%</td>
<td>78%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>65%</td>
<td>93%</td>
</tr>
</tbody>
</table>
PMV results in excellent hemodynamic and clinical improvement in the majority of patients with mitral stenosis.

The immediate and long-term outcome of patients undergoing PMV is multi-factorial. The use of the *Echo-Sc* in conjunction with other clinical and morphological predictors of PMV outcome allows identification of patients who will obtain the best outcome from PMV.
• These factors include pre-PMV variables (MVA, history of previous surgical commissurotomy, age and MR) and post-PMV variables (MR ≥ 3 + and PA pressure).

• In hospital complications, immediate and long-term follow-up results are similar to those of open and closed surgical commissurotomy.

• Thus, PMV is the procedure of choice for the treatment of most patients with rheumatic mitral stenosis.